703 research outputs found

    Estimating the numbers of malaria infections in blood samples using high-resolution genotyping data

    Get PDF
    People living in endemic areas often habour several malaria infections at once. High-resolution genotyping can distinguish between infections by detecting the presence of different alleles at a polymorphic locus. However the number of infections may not be accurately counted since parasites from multiple infections may carry the same allele. We use simulation to determine the circumstances under which the number of observed genotypes are likely to be substantially less than the number of infections present and investigate the performance of two methods for estimating the numbers of infections from high-resolution genotyping data.THE SIMULATIONS SUGGEST THAT THE PROBLEM IS NOT SUBSTANTIAL IN MOST DATASETS: the disparity between the mean numbers of infections and of observed genotypes was small when there was 20 or more alleles, 20 or more blood samples, a mean number of infections of 6 or less and where the frequency of the most common allele was no greater than 20%. The issue of multiple infections carrying the same allele is unlikely to be a major component of the errors in PCR-based genotyping.Simulations also showed that, with heterogeneity in allele frequencies, the observed frequencies are not a good approximation of the true allele frequencies. The first method that we proposed to estimate the numbers of infections assumes that they are a good approximation and hence did poorly in the presence of heterogeneity. In contrast, the second method by Li et al estimates both the numbers of infections and the true allele frequencies simultaneously and produced accurate estimates of the mean number of infections

    Molecular characterization and complete genome sequence of avian paramyxovirus type 4 prototype strain duck/Hong Kong/D3/75

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds throughout the world. All APMVs, except avian metapneumovirus, are classified in the genus <it>Avulavirus </it>of the family <it>Paramyxoviridae</it>. At present, the APMVs of genus <it>Avulavirus </it>are divided into nine serological types (APMV 1–9). Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. Very little is known about the molecular characteristics and pathogenicity of APMV 2–9.</p> <p>Results</p> <p>As a first step towards understanding the molecular genetics and pathogenicity of APMV-4, we have sequenced the complete genome of APMV-4 strain duck/Hong Kong/D3/75 and determined its pathogenicity in embryonated chicken eggs. The genome of APMV-4 is 15,054 nucleotides (nt) in length, which is consistent with the "rule of six". The genome contains six non-overlapping genes in the order 3'-N-P/V-M-F-HN-L-5'. The genes are flanked on either side by highly conserved transcription start and stop signals and have intergenic sequences varying in length from 9 to 42 nt. The genome contains a 55 nt leader region at 3' end. The 5' trailer region is 17 nt, which is the shortest in the family <it>Paramyxoviridae</it>. Analysis of mRNAs transcribed from the P gene showed that 35% of the transcripts were edited by insertion of one non-templated G residue at an editing site leading to production of V mRNAs. No message was detected that contained insertion of two non-templated G residues, indicating that the W mRNAs are inefficiently produced in APMV-4 infected cells. The cleavage site of the F protein (DIPQR↓F) does not conform to the preferred cleavage site of the ubiquitous intracellular protease furin. However, exogenous proteases were not required for the growth of APMV-4 in cell culture, indicating that the cleavage does not depend on a furin site.</p> <p>Conclusion</p> <p>Phylogenic analysis of the nucleotide sequences of viruses of all five genera of the family <it>Paramyxoviridae </it>showed that APMV-4 is more closely related to the APMVs than to other paramyxoviruses, reinforcing the classification of all APMVs in the genus <it>Avulavirus </it>of the family <it>Paramyxoviridae</it>.</p

    Health Worker Compliance with a 'Test And Treat' Malaria Case Management Protocol in Papua New Guinea

    Get PDF
    The Papua New Guinea (PNG) Department of Health introduced a 'test and treat' malaria case management protocol in 2011. This study assesses health worker compliance with the test and treat protocol on a wide range of measures, examines self-reported barriers to health worker compliance as well as health worker attitudes towards the test and treat protocol. Data were collected by cross-sectional survey conducted in randomly selected primary health care facilities in 2012 and repeated in 2014. The combined survey data included passive observation of current or recently febrile patients (N = 771) and interviewer administered questionnaires completed with health workers (N = 265). Across the two surveys, 77.6% of patients were tested for malaria infection by rapid diagnostic test (RDT) or microscopy, 65.6% of confirmed malaria cases were prescribed the correct antimalarials and 15.3% of febrile patients who tested negative for malaria infection were incorrectly prescribed an antimalarial. Overall compliance with a strictly defined test and treat protocol was 62.8%. A reluctance to test current/recently febrile patients for malaria infection by RDT or microscopy in the absence of acute malaria symptoms, reserving recommended antimalarials for confirmed malaria cases only and choosing to clinically diagnose a malaria infection, despite a negative RDT result were the most frequently reported barriers to protocol compliance. Attitudinal support for the test and treat protocol, as assessed by a nine-item measure, improved across time. In conclusion, health worker compliance with the full test and treat malaria protocol requires improvement in PNG and additional health worker support will likely be required to achieve this. The broader evidence base would suggest any such support should be delivered over a longer period of time, be multi-dimensional and multi-modal

    Do penile cutting practices other than full circumcision protect against HIV?

    Get PDF
    Introduction: Male circumcision provides a high level of protection against sexually acquired HIV infection and is a key element of prevention in countries with extensive heterosexual transmission. In some countries, penile cutting practices other than full circumcision are a part of the cultural landscape, raising the question of their ability to modify the risk of HIV. One such country is Papua New Guinea. Methods: We reviewed information on prevalence of HIV, sexually transmitted infection (STI), and penile cutting practices, and their possible relationships. Results: Based on antenatal testing, the prevalence of HIV infection among pregnant women in Papua New Guinea is around 0.9%. Surveys of STI in pregnant women have found prevalences of chlamydia, gonorrhoea and trichomonas in the range 15-25%, and infectious syphilis at 2-3%. In three studies of penile cutting around half the men have some form of procedure; 10% had full foreskin removal with a further 30-40% having dorsal slits, with lateral retraction of the foreskin and exposure of the glans. There is evidence of an inverse geographic correlation between HIV prevalence and partial cutting practice. Conclusions: Levels of curable STIs in Papua New Guinea are very high by international levels, while HIV infection is at moderate levels compared to the countries in which male circumcision is now being promoted. The role of partial penile cutting procedures deserves further examination to see whether it provides protection, and if so what this tells us of the biology of HIV transmission

    Antibiotic resistant Shigella is a major cause of diarrhoea in the Highlands of Papua New Guinea

    Get PDF
    Introduction: Diarrhoea remains a major cause of illness in Papua New Guinea (PNG); however, little is known about its aetiology. As a result of the cholera outbreak that spread throughout PNG in 2009-2011, we conducted diarrhoeal surveillance in Eastern Highlands Province. Methodology: Following informed consent and a brief questionnaire, participants provided a stool sample or duplicate rectal swabs. Samples were tested for common bacterial pathogens Salmonella spp., Shigella spp., Vibrio spp., Campylobacter spp. and Yersinia enterocolitica using established culture methods. Enteric parasites were detected using microscopy. Results: A total of 216 participants were enrolled; where age was recorded, 42% were under 5 years of age, 6.7% were 5 to 17 years of age and 51.3% ≥18 years of age. One or more pathogens were detected in 68 (31.5%) participants, with Shigella (primarily S. flexneri) being the most commonly isolated (47 of 216 participants). Enteric parasites were detected in 23 of the 216 participants, occurring as a co-infection with another pathogen in 12 of 23 cases. No Vibrio cholerae was detected. Shigella isolates were commonly resistant to ampicillin, tetracycline, co-trimoxazole and chloramphenicol. Conclusions: Shigellae, specifically S. flexneri, are important pathogens in the highlands of PNG. While most studies in low-income settings focus on childhood aetiology, we have demonstrated the importance of Shigella in both children and adults. Enteric parasites remain present and presumably contribute to the burden of gastrointestinal illness. While improvements in sanitation and hygiene would help lower the burden of all aetiologies of infectious diarrhoea, additional control strategies targeting Shigella may also be warranted

    Experimental infection of hamsters with avian paramyxovirus serotypes 1 to 9

    Get PDF
    Avian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds throughout the world and are separated into nine serotypes (APMV-1 to -9). Only in the case of APMV-1, the infection of non-avian species has been investigated. The APMVs presently are being considered as human vaccine vectors. In this study, we evaluated the replication and pathogenicity of all nine APMV serotypes in hamsters. The hamsters were inoculated intranasally with each virus and monitored for clinical disease, pathology, histopathology, virus replication, and seroconversion. On the basis of one or more of these criteria, each of the APMV serotypes was found to replicate in hamsters. The APMVs produced mild or inapparent clinical signs in hamsters except for APMV-9, which produced moderate disease. Gross lesions were observed over the pulmonary surface of hamsters infected with APMV-2 & -3, which showed petechial and ecchymotic hemorrhages, respectively. Replication of all of the APMVs except APMV-5 was confirmed in the nasal turbinates and lungs, indicating a tropism for the respiratory tract. Histologically, the infection resulted in lung lesions consistent with bronchointerstitial pneumonia of varying severity and nasal turbinates with blunting or loss of cilia of the epithelium lining the nasal septa. The majority of APMV-infected hamsters exhibited transient histological lesions that self resolved by 14 days post infection (dpi). All of the hamsters infected with the APMVs produced serotype-specific HI or neutralizing antibodies, confirming virus replication. Taken together, these results demonstrate that all nine known APMV serotypes are capable of replicating in hamsters with minimal disease and pathology

    Novel Genotyping Tools for Investigating Transmission Dynamics of Plasmodium falciparum

    Get PDF
    Background. Differentiation between gametocyte-producing Plasmodium falciparum clones depends on both high levels of stage-specific transcripts and high genetic diversity of the selected genotyping marker obtained by a high-resolution typing method. By analyzing consecutive samples of one host, the contribution of each infecting clone to transmission and the dynamics of gametocyte production in multiclone infections can be studied. Methods. We have evaluated capillary electrophoresis based differentiation of 6 length-polymorphic gametocyte genes. RNA and DNA of 25 µL whole blood from 46 individuals from Burkina Faso were simultaneously genotyped. Results. Highest discrimination power was achieved by pfs230 with 18 alleles, followed by pfg377 with 15 alleles. When assays were performed in parallel on RNA and DNA, 85.7% of all pfs230 samples and 59.5% of all pfg377 samples contained at least one matching genotype in DNA and RNA. Conclusions. The imperfect detection in both, DNA and RNA, was identified as major limitation for investigating transmission dynamics, owing primarily to the volume of blood processed and the incomplete representation of all clones in the sample tested. Abundant low-density gametocyte carriers impede clone detectability, which may be improved by analyzing larger volumes and detecting initially sequestered gametocyte clones in follow-up sample

    Population genetic analysis of the Plasmodium falciparum 6-cys protein Pf38 in Papua New Guinea reveals domain-specific balancing selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Plasmodium falciparum </it>merozoite surface protein Pf38 is targeted by antibodies of malaria immune adults and has been shown to be under balancing (immune) selection in a Gambian parasite population, indicating potential as a malaria vaccine candidate. This study explores the population genetics of <it>Pf</it>38 in Papua New Guinea, to determine the extent and geographic distribution of diversity and to measure selective pressure along the length of the gene.</p> <p>Methods</p> <p>Using samples collected during community-based cross-sectional surveys in the Mugil and Wosera regions, the <it>Pf38 </it>genes of 59 <it>P. falciparum </it>isolates were amplified and sequenced. These sequences, along with previously sequenced Gambian and laboratory isolates, were then subjected to an array of population genetic analyses, examining polymorphisms, haplotype diversity and balancing selection. In addition to whole-gene analysis, the two 6-cys domains were considered separately, to investigate domain specific polymorphism and selection.</p> <p>Results</p> <p>Nineteen polymorphic sites were identified in the <it>Pf </it>38 gene. Of these, 13 were found in the Gambia, 10 in Mugil and 8 in Wosera. Notably, the majority of common polymorphisms were confined to domain I. Although only moderate levels of nucleotide diversity were observed, the haplotype diversity was high in all populations, suggesting extensive recombination. Analyses of the full-length sequence provided only modest evidence for balancing selection. However, there was a strong contrast between domain I, which showed strong evidence for positive balancing selection, and domain II which was neutral. Analyses of the geographic distribution of Pf38 haplotypes showed that four haplotypes accounted for the majority of sequences found world-wide, but there were many more haplotypes unique to the African than the PNG populations.</p> <p>Conclusion</p> <p>This study confirmed previous findings that <it>Pf38 </it>is a polymorphic gene under balancing selection. However, analysing polymorphism and selection across the length of the gene painted a considerably different picture. Domain I is highly polymorphic and the target of significant balancing selection. In contrast, domain II is relatively conserved and does not show evidence of immune selective pressure. The findings have implications for future population genetic studies on vaccine candidates, showing that the biological context must also be considered as a framework for analysis.</p

    A new high-throughput method for simultaneous detection of drug resistance associated mutations in Plasmodium vivax dhfr, dhps and mdr1 genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reports of severe cases and increasing levels of drug resistance highlight the importance of improved <it>Plasmodium vivax </it>case management. Whereas monitoring <it>P. vivax </it>resistance to anti-malarial drug by <it>in vivo </it>and <it>in vitro </it>tests remain challenging, molecular markers of resistance represent a valuable tool for high-scale analysis and surveillance studies. A new high-throughput assay for detecting the most relevant markers related to <it>P. vivax </it>drug resistance was developed and assessed on Papua New Guinea (PNG) patient isolates.</p> <p>Methods</p> <p><it>Pvdhfr, pvdhps </it>and <it>pvmdr1 </it>fragments were amplified by multiplex nested PCR. Then, PCR products were processed through an LDR-FMA (ligase detection reaction - fluorescent microsphere assay). 23 SNPs, including <it>pvdhfr </it>57-58-61 and 173, <it>pvdhps </it>382-383, 553, 647 and <it>pvmdr1 </it>976, were simultaneously screened in 366 PNG <it>P. vivax </it>samples.</p> <p>Results</p> <p>Genotyping was successful in 95.4% of the samples for at least one gene. The coexistence of multiple distinct haplotypes in the parasite population necessitated the introduction of a computer-assisted approach to data analysis. Whereas 73.1% of patients were infected with at least one wild-type genotype at codons 57, 58 and 61 of <it>pvdhfr</it>, a triple mutant genotype was detected in 65.6% of the patients, often associated with the 117T mutation. Only one patient carried the 173L mutation. The mutant 647P <it>pvdhps </it>genotype allele was approaching genetic fixation (99.3%), whereas 35.1% of patients were infected with parasites carrying the <it>pvmdr1 </it>976F mutant allele.</p> <p>Conclusions</p> <p>The LDR-FMA described here allows a discriminant genotyping of resistance alleles in the <it>pvdhfr</it>, <it>pvdhps</it>, and <it>pvmdr1 </it>genes and can be used in large-scale surveillance studies.</p

    Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing

    Get PDF
    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources
    corecore